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An Examination of the Shrinking-Core Model of Sub-Micron

Aluminum Combustion

John Buckmaster∗and Thomas L Jackson†‡

September 14, 2012

1 Introduction

There has been significant interest in recent years in the combustion of sub-micron aluminum
particles, and the standard theoretical framework is the shrinking-core model. This model, in the
context of any fuel, has roots that go back 60 years, [1]. A common reference is a chapter in
[2], although the discussion there, within a framework of global statements, is reminiscent of well-
stirred reactor discussions, familiar in the chemical engineering literature, so that certain details
are obscured. However, the model is simply described: A spherical core of liquid aluminum is
surrounded by a shell of alumina and the aluminum core shrinks as aluminum is converted to
alumina at the metal/oxide interface. The conversion occurs because of the inward transport of O
atoms (we assume that the surrounding atmosphere is air) from the outer boundary of the oxide
shell. It is commonly assumed that this transport is solely diffusive in nature, and quasi-steady, at
best an approximation; and that apart from the aluminum/oxide transformation, the geometry is
fixed. Provided these approximations only lead to modest error it might be reasonably argued that
it is acceptable in view of two significant uncertainties: the value of the diffusion coefficient of the
O atoms; and the value of the O concentration within the oxide at the oxide boundary. However, as
we shall see, one of the neglected ingredients has significant mechanical consequences in the context
of the spherical geometry, and therefore it is important to consider it.
Because of the mechanical consequences, an analytical treatment in the spherical geometry is not
possible, and yet analytical treatments are of great value in revealing fundamental physics. And so
we shall start our discussion with a planar model, purely because of the insights thereby achieved,
not because it corresponds to a configuration to be found in the physical world.

2 The Planar Problem

The configuration is sketched in Figure 1. Liquid aluminum occupies the interval 0 < x < xal.,
alumina occupies the region xal. < x < xoxd.. The interface between the two materials, also the

∗Buckmaster Research, Urbana, IL 61801.
†Computational Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801. Also,
IllinoisRocstar LLC, Urbana, IL, 61826.
‡Distribution A: Approved for public release; distribution unlimited
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reaction front, moves to the left with speed vrf . the oxide moves as a solid body to the right with
speed v. The Ṁ are mass fluxes (of O atoms, aluminum, oxide) to or from the front, measured
relative to the front.

This model does not account for aluminum diffusion, only diffusion of the O atoms. If diffusion
of both occurs the reaction would occur interior to the alumina either at a front or within a spread-
out reaction zone. There are various references to (and opinions about) aluminum diffusion in the
literature.

Campbell et al, [3] carry out molecular dynamics simulation in which they consider a ball
of aluminum atoms of diameter 20nm exposed to an oxygen atmosphere and observe oxide layer
growth with diffusion of both aluminum and oxygen. They claim that the alumimum diffusion is
greater than that of the oxygen because of the smaller steric size of the aluminum atoms. But
the temperature is 300K so that the aluminum is solid, and here we are concerned with liquid
aluminum; in the rocket business the interest is in aluminum particles released into the hot rocket
chamber.

Rai et al, [4] claim that when the aluminum is solid, oxygen diffusion alone occurs; when the
alumimum is liquid both aluminum and oxygen diffusion occur. For evidence they note that they
get hollow post-burn oxide particles when the temperatures are high enough for the aluminum to
be in the molten state. This is an interesting argument, but if one carries out a standard shrinking-
core model analysis, with an interior reacting front, and invokes Ockham’s Razor - the volume
of the aluminum sphere changes precisely to accommodate the outward aluminum diffusion - this
leads naturally to a solution sans interior void. To get a void one would need to move the outer
boundary of the aluminum inward more slowly but how one would specify that modification is
unknown. Note that an appeal to the steric argument to justify that alumimim diffusion will occur
ignores other physical ingredients. The atoms at a liquid surface are tied by atomic forces, and
an atom will only detach from the surface when the sum of the collision forces from its neighbors
is sufficient; sufficiency is a function of the temperature. And should a central void be inclined to
arise the pressure there will be small, provided by aluminum vapor, and there will be a positive
radial pressure gradient in the liquid which will also discourage surface detachment of atoms.

Trunov et al, [5] divide the oxidation process into two stages. At early times the oxide is
amorphous in nature and is generated by aluminum diffusion. But the amorphous layer is only
stable for thickness up to 5nm, and after that the γ crystalline form is generated (crystal size 5nm),
generated by O diffusion. The α crystal state might occur later (crystal size 45nm) but only for
large drops. However, these conclusions are rooted in experiments for slow oxidation, not the fast
oxidation that is of interest to us.

Our conclusion is that the role of aluminum diffusion for our problem is, as yet, unknown, and
our choice at this time is to ignore it. In a later study we shall revisit this question, partly because
of the possibility that aluminum diffusion plays a role in transition solutions leading to the classical
drop burning regime.

Returning to Figure 1, the two speeds are measured in the laboratory frame tied to x = 0. The
speed v arises from mass conservation at the reaction front where, overall,

2Al + 3O → Al2O3

(54) (48) (102)
(1)

(We shall henceforth use α=54, β=48, and γ=102 so that our results can be understood in other
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vvrf

Ṁal

Ṁo

Ṁoxd

xal xoxdx = 0

reaction
front

aluminum oxide

Figure 1: Configuration. v and vrf are measured in the laboratory frame; all Ṁ are measured
relative to the reaction front.
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contexts.) Then if in a frame attached to the front the mass flux of O to the front is Ṁo, the mass
flux of aluminum to the front is Ṁal., and the mass flux of oxide away from the front is Ṁoxd. (then
all the Ṁ are positive) we have

Ṁal.

Ṁo

=
α

β
and

Ṁoxd.

Ṁal.

=
γ

α
(2)

Now

Ṁal. = ρal.vrf (3)

and

Ṁoxd. = (v + vrf )ρoxd. (4)

Also, accounting for both convection and diffusion of O,

Ṁo = −(v + vrf )c+ D
∂c

∂x
(5)

where c is the concentration of O atoms (in dimensions that of density). Here we shall assume that
the reaction is fast, and is controlled by diffusion, so that at the front c = 0. Then

Ṁo|fast chem. = D
∂c

∂x
(6)

Within the oxide, c satifies the equation

∂c

∂t
+ v

∂c

∂x
= D

∂2c

∂x2
(7)

Note that we neglect convective fluxes of c relative to the oxide which could only arise because of
pressure gradients. Reference 4 accounts for pressure gradients, motivated by the simulations of
Reference 3, and we shall say something about general stresses in a later section when we consider
the spherical geometry.

Insofar as the oxide speed v is concerned, we have yet to come across any explicit discussion
of it, although its physical origins and one of the important roles that it plays have long been
recognized by corrosion scientists. If a thin layer of metal is converted to an oxide layer of greater
volume, as in the case of aluminum, this converted layer will push out previously generated layers.
And in the case of curved displaced layers, hoop stresses will be generated. Corrosion scientists are
only interested in thin surface layers, [6, 7, 8]. More recently this phenomenon has been recognized
by those concerned with aluminum drop ignition, [9], and here also it is only thin layers of surface
oxide that are of interest. Our interests go deeper than that, literally.

It should be noted that Ref [9] proposes a model of sub-micron aluminum combustion that is
quite different from the shrinking-core model. It is rooted in the idea that genesis layers of oxide
violently rupture when heated rapidly, leading to an expansion wave which propagates into the core
so that liquid aluminum is violently expelled in atomic sized clusters of naked aluminum which is
rapidly consumed. The fundamental argument is a thermal one, quite independent of combustion,
and Lynch et al, [10], subjected particles to the high temperature behind a reflected shock in an
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inert (argon) atmosphere and spectrally examined the post shock gases. They found no trace of
aluminum vapor for temperatures below 2300K.

Returning to equation (7), for the moment we shall adopt the quasi-steady approximation,
neglecting the time derivative. Provided dynamical ingredients are not at the heart of a physical
problem this can often be a useful approximation, providing valuable insights, albeit with quan-
titative error. We shall retain the time derivatives in numerical calculations reported later in the
paper.

The general solution is

c = A+B exp
[ v
D
x
]

(8)

for arbitrary constants A and B to be determined from the boundary conditions

c = 0 at x = xal. and c = co at x = xoxd. (9)

As noted earlier, the determination of co is difficult. O atoms are generated by collision of oxygen
molecules with the aluminum surface, collide themselves with the surface, and a certain fraction
attach and subsequently pass into the alumina between the alumina molecules. The gas phase
processes are not in the continuum domain for there is a Knudsen layer at the drop/particle surface.

With c then specified as a function of v,D, co, xal. and xoxd. equations (6), (3) and (2) yield

Ṁo = vco

[
exp

v

D
(xoxd. − xal.)− 1

]−1
=

β

α
Ṁal. =

β

α
ρal.vrf (10)

Now

dxal.
dt

= −vrf and
dxoxd.
dt

= v (11)

where, from (4), (3), and (2)

v =

[
γ

α

ρal.
ρoxd.

− 1

]
vrf (12)

With ρal.=2400 kg/m3, ρoxd.=3950 kg/m3 the constant coefficient on the rhs is 0.148 for the alu-
minum problem.

Equations (12), (11), and (10) define equations for xal. and xoxd. from which we can deduce

xoxd. − xoxd.|0 = −[xal. − xal.|0]
[
γ

α

ρal.
ρoxd.

− 1

]
(13)

where

xoxd.|0 = xal.|0 = L (14)

the initial thickness of the aluminum. And

(xal. − L)2 = 2Λt (15)

where
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Λ = DΓ−1[1 + Γ]−1 ln

[
1 +

α

β

co
ρal.

Γ

]

Γ =
γ

α

ρal.
ρoxd.

− 1
(16)

Since co is three orders of magnitude smaller than ρal., the logarithm function can be replaced by
a linear approximation, whence

Λ ≈ D(1 + Γ)−1α

β

co
ρal.

(17)

At the end of the burn, when xal.=0, t = tburn ∝ L2 a ”d2 − t” law in the vocabulary of fuel-drop
burning. The formula is

tburn =
L2

2

β

α

ρal.
co

(1 + Γ)

D
(fast chemistry, quasi-steady) (18)

A d2− t law arises for a simple dimensional reason for the only way to define a time is L2/D (cf.
(15), (16). As noted earlier, the specification of D is challenging, but if the burn-law is essentially
a d2 − t law an order-of-magnitude estimate for D is L2/tburn. an estimate that will be valid for
the spherical geometry with L equal to the particle/drop diameter.

For the same dimensional reasons the d2−t law arises in the classical model of external flame fuel-
drop burning in which the flame is essentially described by the Burke-Schumann limit. Sufficiently
large aluminum drops will essentially burn in this fashion, modified slightly by the presence of
an alumina cap on the aluminum ball. A thorough review of super-micron sized drop burning is
presented in [11], and Figure 1 of that paper shows burning times vs diameter from 12 experimental
studies, with diameters ranging from about 16 microns to 800 microns. There is substantial scatter
in the combined data, but a best fit corresponds to a d1.99 − t law. We know that when the flame
temperature is greater than the ambient, the theoretical burning response of maximum temperature
vs Damkohler number (proportional to d2) is S-shaped with most observed burning occurring on the
upper branch. Then a reduction of the Damkohler number will lead to quenching when the upper
branch ends unless the ambient temperature is large enough to sustain significant evaporation of the
aluminum so that combustion can continue on the lower branch. Thus at an ambient temperature of
1500K, for example, sufficiently small drops can not burn classically; on the other hand submicron
drops can burn at that temperature in an internal combustion context. The nature of the transition
zone, whether or not one always exists even, is not understood at the present time. Lynch et al,
[12], examined 3-11 micron drops at temperature greater than 2400K, and therefore greater than
the melting temperature of alumina. They used a variety of atmospheres and obtained dn − t laws
for n between 1.3 and 0.2.

Returning to the solution summarized by equations (15) and (16) we can write down formulas
for the speeds. We have

vrf =

√
Λ

2t
(19)

and
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v =

[
γ

α

ρal.
ρoxd.

− 1

]√
Λ

2t
(20)

The singularity at t = 0 arises because at t = 0 we have c = co at x = xoxd.|0 and c = 0 at
x = xal.|0, coincident locations. It is the familiar singularity associated with the Rayleigh problem,
for example.

If equation (19) is integrated over the burn time, the final location of the outer oxide boundary
is easily calculated

xoxd.|burn =
γ

α

ρal.
ρoxd.

L (21)

This simply states that the final mass of oxidizer ρoxd.xoxd.|burn is equal to γ
α times the initial mass

of aluminum ρal.L, as required by the stoichiometry of (1). If the convection term in the equation
for c, (7), is neglected, such global conditions, at different times, can bypass any discussion of v.
Global mass considerations can also lead to the prediction of the final drop/particle radius for the
spherical problem, but there the role of v is more profound because the generation of a radial oxide
speed at the aluminum/alumina interface can not generate a mere solid body displacement, but
must lead to a significant stress field. This is the subject of a later section.

Consider now the importance of the convection term in (7). Since x ∼ L, c ∼ co, and v ∼ √
D/t

we have

v
∂c

∂x
∼ co

t
and D

∂2c

∂x2
∼ co

t
(22)

and convection may not be neglected. But the time derivative has the same estimate, and so should
be retained also; done properly, this is a 2-boundary Stefan problem with convection. Fortunately
dynamics is not central to the problem, and this would not be the first time that a quasi-steady
model has been adopted in circumstances for which it is but an extra-rational approximation.
We can be reasonably sure that the qualitative picture that we have painted here is essentially
sound, and the omitted time derivatives provide but quantitative corrections. Some measure of
the magnitude of these corrections will be provided by numerical calculations described in the next
section.

We finish this section by identifying the burn time when v is neglected, and xoxd. remains fixed
at the initial value L. Then the solution for c is linear in x, vanishing at xal and having the value
co at L. Thus the diffusive flux to the reacting front is a simple function of xal., proportional to
vrf . In this way we find that the burn time is

tburn =
L2

2

β

α

ρal.
Dco

(fast chemistry, quasi-steady, v = 0) (23)

which differs from (18) by the factor (1+Γ). In section 4 we compare this burn time and the burn
time defined by (18) with numerical results obtained with v and ∂c/∂t retained.

3 Finite Chemistry Effects

In this section we start with the model of section 2 but modify it to account for finite-rate chemistry
at the reaction front, so that c does not vanish there. The aluminum is liquid but how one should
characterize the ensemble of O atoms is not clear. The constraints of the alumima molecules rob
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it of the essential characteristics of a gas; nor is it a liquid. And so the reaction should probably
be thought of as of the heterogeneous kind.

Global modeling of homogeneous gas-phase reactions has proven to be most valuable. If there
are two reactants concentrations A, B, which, in a global sense react according to

αA+ βB → Products (24)

(i.e. this is not an elementary reaction) then, with a nod to the law of mass action and to the
Maxwellian distribution of molecular speed (related to collision energy) we can model the reaction
rate by

K = kAμBν exp

[
− E

RT

]
(25)

with suitably chosen values of k, μ, ν and E.
This can also work well for certain heterogeneous reactions; for example, experimental data for

the chemical erosion of carbon by hot gases (relevant in nozzle erosion) has been fitted with similar
formulas: a discussion with several references may be found in [13]. This is not too surprising.
In one case gas molecules are colliding with gas molecules with a collision frequency that depends
on the two concentrations; in the other, gas molecules are colliding with the surface of the carbon
with a collision frequency that depends on the single concentration. In both cases the energy of
the collisions is related to the high temperature tail of the Maxwellian.

We know of no authoritative discussion of a global kinetics model for our problem. However, it
is not implausible to speculate that the rate at which aluminum atoms encounter O atoms depends
on the concentration of the latter and, since we do not account for thermal effects so that the
temperature dependence of the efficacy of such encounters is immaterial, we can take

K = kcη at x = xal. (26)

to be the reaction rate. That is, with the choice η = 1, equation (6) is rewritten

Ṁo =
b

a
ρal.vrf = −(v + vrf )crf + D

∂c

∂x
|rf = kcrf (27)

With this modification, the analysis proceeds as in Section 2, so that we do not need to burden the
reader with the details. The results are:

[
β

α

ρal.
k

vrf − co

] [
γ

α

ρal.
ρoxd.

exp
( v

D
xoxd.

)
− exp

( v

D
xal.

)]
=

[
β

α
ρal. +

γ

α

ρal.
ρoxd.

co

] [
exp

( v

D
xal.

)
− exp

( v

D
xoxd.

)] (28)

where, as before,

v = vrf

[
γ

α

ρal.
ρoxd.

− 1

]
=

dxoxd.
dt

vrf = −dxal.
dt

(29)
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To examine equation (28) it is useful to introduce some scalings. To this end we write

xoxd. = Lsoxd., xal. = Lsal., v =
D

L
u, vrf =

D

L
urf (30)

so that (28) becomes

co

[
β

α

ρal.
co

D

kL
− 1

] [
γ

α

ρal.
ρoxd.

exp(usoxd.)− exp(usal.)

]
=

[
β

α
ρal. +

γ

α

ρal.
ρoxd.

co

]
[exp(usal.)− exp(usoxd.)]

(31)

In the fast chemistry limit we recover the results of section 2. In the slow chemistry limit (k → 0)
u vanishes so that the exponentials can be simplified, and (31) leads to

urf

[
β

α

D

kL
+ (soxd. − sal.)

[
β

α
+

γ

α

ρal.
ρoxd.

co
ρal.

]]
∼ co

ρal.
(32)

which, when D/kL � 1, leads to

urf ∼ α

β

co
ρal.

kL

D
i.e. vrf ∼ α

β

co
ρal.

k (33)

Then crf = co (there is no gradient of oxygen in the oxide), and the burning law is a linear one;
the only relevant speed is k:

tburn =
Lβρal.
αcok

(slow chemistry) (34)

This familiar result mirrors Glassman’s discussion for gas-phase burning, [14]. Note that quite
independently of the simple limit solution for c, the scalings show that the ratio of the diffusion
term to both the time derivative and the convection term is

O

[
D

kL

ρal.
co

]

and so the neighborhood of this limit may be discussed within a purely diffusive framework.

4 Numerical Results

In section 2 we deduced that the quasi-steady burn time in the fast chemistry limit is L2/2Λ
(equation (18)); in the same limit but with v neglected it is L2βρal./2αDco (23); and in section 3
we deduced that the burn time in the slow chemistry limit is (βLρal.)/(αkco) (34). Consider the
parameter choices

co = 6.4kg/m3 k = 18.75m/s D = 10−5m2/s ρal. = 2400kg/m3 ρoxd. = 3950kg/m3

α = 54 β = 48 γ = 102
(35)
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Then the limit burn times are

1.91× 107L2 s eq(18) 1.67× 107L2 s eq(23) 17.78L s eq(34) (36)

In the log-log plane the first and third of these define two straight lines which intersect at L =
.931 × 10−6, with kL/D = 1.75; order 1 values of kL/D characterize the transition from the
linear burn law to the quadratic law. This transition is more accurately described using numerical
simulations in which the time derivatives are retained.

In doing this we note that the system is stiff, because of the small value of co/ρal., so that an
explicit solver, such as Runge-Kutta, is inadequate. We used a Crank-Nicholson scheme, and the
results are shown in Figure 4. The straight lines cross at L = 10−6, kL/D = 1.9, slightly different
from the conclusions using the analytical results. At L = 10−9 the analytically derived burn time
is 1.78 × 10−8 in close agreement with the numerical result. At a burn time of 1 the analytically
derived value of L from eq(18) is 2.29×10−4; from eq(23) it is 2.45×10−4. In both cases the errors
are quite small.

5 Summary

In the past sections we have examined the familiar shrinking-core model in the planar context in
order to highlight several features that do not appear to have been adequately discussed in the
past. One is the speed v acquired by the alumina because of the addition of mass (aluminum and
O) at the reaction front. It should be noted that if Rai et al, [4], are correct in arguing that the
reacting front or domain lies within the alumina, then there will be convective fluxes of alumina
away from the domain on both sides as alumina is added by reaction, necessarily tearing apart
existing alumina molecules, and there would be substantial material stresses associated with this.
But, as we shall see in the next section, there are substantial stresses associated with the creation
of alumina in the context of the model that we adopt when the geometry is spherical so that simple
solid-body displacement of the alumina, as in the planar problem, is not possible.

A second point that we have discussed is the role of the convection term and the time derivative
in defining the distribution of c, the O concentration. Technically, both should be retained in the
fast-chemistry limit, as both terms are comparable to the diffusion term. However, the time scale
is defined by vrf , not v, and for aluminum burning v is roughly 1/7 of vrf . Then an error of 15%
caused by omitting the convection term may not be of much significance if D is not well known.
There is no good a priori reason for omitting ∂c/∂t, but there also the error is small, at least for
the values used in aluminum combustion.

6 The Spherical Problem

In this section we turn from the planar geometry to the spherical one. Here equations (1)-(6) are
still applicable, as is (7) when the diffusion term is written in spherical form, but the oxide speed v
presents difficulties, since it no longer corresponds to a solid-body displacement unless we suppose
that the alumina is rigid. To calculate v we have to consider the displacement and stress fields in
the oxide, and that is our focus.

Consider a sphere of liquid aluminum surrounded by a shell of alumina. As before we assume
that the reaction surface is at the boundary between the two materials without assumption as

10
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to what controls the reaction, whether it be diffusion of O through the oxide, or reaction at the
aluminum surface. We assume that the reacting surface moves inwards with speed vrf , and that
the creation of alumina at the surface leads to an outward flux of alumina from the surface with
local speed v. We calculate the stress consequences of this by considering an elastic shell of outer
radius b and inner radius a. a decreases with time because of the aluminum consumption, and we
shall assign this function. b changes for two reasons: the volume of oxide generated is greater than
the volume of aluminum consumed; elastic displacement.

Considering just the first, if the initial radii are b0 and a0, and the final value of b is bf (af = 0)
then

b3f = b30 +

(
102

54

ρal.
ρoxd.

)
a30. (37)

b0 is greater than a0 by an amount s, the thickness (small) of the genesis oxide layer. Then it is
trivially shown that

bf
b0

< 1.047 (38)

and we shall neglect this change.
As for the elastic displacement, our calculations are within the framework of linear elasticity,

and so that is also neglected.
The pressure in the external environment is taken to be Pb and that in the core region Pa. The

presence of aluminum in the core plays no role except that its contribution to the reaction provides
a relation between vrf and v, as before. In what follows r is the radius, σ is Poisson’s Ratio, E is
Young’s Modulus, τr is the radial stress, τ1 and τ2 are hoop stresses, δ is the radial displacement,
ε1 and ε2 are the hoop strains, and εr is the radial strain.

The solutions of the linear equations of elasticity for this configuration are

τr =
1

(b3 − a3)

[
Paa

3 − Pbb
3 +

a3b3(Pb − Pa)

r3

]

τ1 = τ2 =
1

(b3 − a3)

[
Paa

3 − Pbb
3 − a3b3(Pb − Pa)

2r3

]

δ =
r

E(b3 − a3)

[
(1− 2σ)(Paa

3 − Pbb
3)− 1 + σ

2r3
a3b3(Pb − Pa)

]

ε1 = ε2 =
δ

r
, εr =

∂δ

∂r

(39)

These formulas can be derived in a straightforward fashion from the equations of linear elasticity, but
may be found in [15]. They were used by Rosenband, [16], to examine the stresses on the genesis
layer of amorphous alumina created when the aluminum particle is ignited and the aluminum
expands.

The radial velocity associated with the displacement δ is

∂δ

∂t
|r which is equal to v when evaluated at r = a (40)

These solutions would normally be used to calculate the displacement and stress fields when Pa

and Pb are assigned. But in our problem we are interested in the assignment of the radial velocity
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at the inner radius a and the assignment of Pb, with Pa to be determined as the driver for v. Pa,
like a, will be a function of time.

Rather than differentiate the formula for δ with respect to t we shall use a as a surrogate for
time, with

a = b− vrf t since a(0) = b (41)

where we shall take vrf (and therefore v, see (12) ) to be constant.
So we differentiate δ with respect to a holding r constant, and then set r = a. Thus

A
dφ

dα
+Bφ+ C =

E(1− α)

Pb

∂δ

∂a
|r=a =

E(1− α)

Pb

(
− v

vrf

)
(42)

where

φ =
Pa

Pb
, α =

a3

b3
(43)

and the coefficients are given by the formulas

A = 3α

[
α(1− 2σ) +

1

2
(1 + σ)

]

B =
3α

(1− α)

[
α(1− 2σ) +

1

2
(1 + σ)

]
+ 3α(1− 2σ) +

3

2
(1 + σ)

C = − α

(1− α)

9

2
(1− σ)− 3

2
(1 + σ)

(44)

Before we can solve equation (42) we need to identify the initial value of Pa. For this purpose
we shall suppose that there is a genesis layer of amorphous oxide of thickness 5nm and that the
particle, of temperature 300K, is placed in an atmosphere of temperature greater than or equal to
the aluminum melting temperature. Because the particle is small and its thermal conductivity high,
it is assumed that its temperature is raised instantly to the atmospheric value, and so experiences
a significant increase in volume which imposes stresses on the alumina. This is a problem that has
been examined before, [9].

For this problem the thin-shell approximations to equations (39) are valid. Thus, writing

(b− a) = s, r = a+ γs (45)

we have, for s small

τr ∼ −Pa + γ(Pa − Pb)

τ1 = τ2 ∼ 1

6

a

t
(Pb − Pa)

(Pa − Pb) ∼ 2Et

a(1− σ)

δ

a

(46)

13



Then with E = 300GPa, σ=0.25, δ/a=.04 (corresponding to a liquid aluminum density of 2400kg/m3,
a solid aluminum density of 2700kg/3), and s/a = 1/16 we have

(Pa − Pb) ∼ 2GPa, τ1 = τ2 ∼ −5.3GPa (47)

Then, to solve (42) we take

v

vrf
= 0.148 E = 300 GPa σ = 0.25 Pb = 2× 106 Pa Pa = 2GPa (48)

where the last two are initial conditions applied at α = 0.834.
Figure 6 shows the variations of φ with a/b. From this we see that the internal pressure rises

significantly as the ball of aluminum shrinks. In this connection we note that Campbell et.al.[3]
conducted a molecular dynamics study of the early stages of the oxidation of solid aluminum and
found that significant internal pressures were generated. And Rai et.al. [4] were motivated by
this work to impose pressure gradients in their study of combustion with both O diffusion and Al
diffusion.

Once φ is known we can calculate the stresses and the strains. Figure 6 shows the strains (vs
a/b) at r = a and r = b

δ

a
|a =

1

(1− α)

Pb

E

[
(1− 2σ)(φα− 1)− 1 + σ

2
(1− φ)

]

δ

b
|b = 1

(1− α)

Pb

E

[
(1− 2σ)(φα− 1)− 1 + σ

2
α(1− φ)

] (49)

And figure 6 shows the hoop stresses at r = a and r = b.

τ1,2|r=a =
Pb

(1− α)

[
φα− 1− 1

2
(1− φ)

]

τ1,2|r=b =
Pb

(1− α)

[
φα− 1− 1

2
α(1− φ)

] (50)

Clearly, when a becomes sufficiently small the strains and stresses can not be sustained by
the alumina, and fracture must occur, albeit not in the neighborhood of the outer surface. The
breaking of spherical symmetry in this way must have a significant impact on the burning rate.

6.1 A Fractal Hypothesis

In our earlier discussion of the planar model we identified the well-known results that the fast-
chemistry limit gives rise to a d2 − t law, whereas the slow-chemistry limit gives rise to a d− t law.
Experiments on sub-micron burning, however, give laws that differ subtantially from these. Thus
Parr et al, [17] report a d0.3 − t law for combustion in steam; and Allen et al, [18] report a d0.35 − t
law for air, a d0.24 − t law for a CO2/H2O/N2 mixture.

Parr et al, [17], discuss agglomeration problems for their burner experiments, and we understand
from anonymous sources that some believe that agglomeraton could be responsible for these small-n
laws. But one would think that the agglomerations would need to be fractal in nature to generate
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Figure 4: Strains vs. a/b
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such an effect. Allen et al, [18], examine drop burning behind a reflected shock wave, and Allen
(private communication) concludes, using conservative collision estimates, that agglomeration is
negligible in that context. And so here we propose a different mechanism.

It is reasonable to suppose that the large hoop stresses generated as the aluminum/alumina
front moves inwards will lead to extensive cracking. It is well known that large cracks in metals
can be fractal in nature, and one might speculate that this is also true for the cracks in the small
particles of interest to us. Should that be the case, the front will be fractal in nature.

Suppose we are in the slow chemistry regime and the radius of the aluminum core is s which
changes with time according to

ds

dt
= −K({Ξ},D, Trf ) (51)

where {Ξ} is the complete set of parameters that characterize the ambient conditions and the
properties of the aluminum and the alumina, and Trf is the temperature at the reaction front. (We
used a special case for K in section 3 in which the ambient state controls co, which in turn controls
crf ). We assume that, overall, the dependence of K on s (via Trf for example) is small.

Equation (51) can be written as

d

dt

[
4

3
πs3

]
= −4πs2K (52)

which expresses the obvious fact that the rate of change of the aluminum volume is proportional
to the aluminum surface area. This is valid for a sphere with a smooth surface area. But if the
alumina is cracked, aluminum will be forced into the cracks by pressure gradients and, perhaps,
surface tension effects and, since the cracks would be thin, this would substantially increase the
aluminum/alumina contact area. If s is now redefined to be the mean volume radius

(
3

4π
V

) 1
3

where V is the total aluminum volume, equation (45) can be rewritten as

d

dt

[
4

3
πs3

]
= −4πs2+νK (53)

for some parameter ν which accounts for the enhanced area. This choice is motivated by the concept
of a fractal area (in 3D space) of dimension 2 + ν, 0 < ν < 1 in which as ν goes to zero the area
dimension approaches that of a smooth surface, and as ν goes to 1 the area is so rough, on a wide
range of scales, that its dimension approaches that of a volume.

Equation (53) implies a d1−ν − t law so that, for example, ν = 0.65 leads to a d0.35 − t law.

7 Conclusions

In this paper we have examined a simple one-dimensional model problem of aluminum combustion
within the framework of the shrinking core model; and the spherical problem. The conclusions
of the first problem are summarized in Section 5, and we note here that the one-dimensional
framework permits a full discussion of the role of v, the speed generated within the oxide by the
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O and Al reaction, together with unsteady effects. Such matters can not be considered for the
spherical problem, because v can not be discussed without accounting for the large strain fields
that it generates. However, using the linear equations of elasticity we can estimate these strains if
we assign a speed to the reacting front. We conclude that internal strains generated thereby are
sufficient to crack the oxide interior. If we then assume that the crack surfaces are fractal in nature,
we are led to burn laws dn − t for which n can be significantly smaller than 1.
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